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Abstract. Many business situations can be called “games” because outcomes depend on
multiple decision makers with differing objectives. Yet, in many cases, the payoffs for all
combinations of player options are not available, but the ability to experiment off-line is
available. For example, war-gaming exercises, test marketing, cyber-range activities, and
many types of simulations can all be viewed as off-line gaming-related experimentation.
We address the decision problem of planning and analyzing off-line experimentation for
games with an initial procedure seeking to minimize the errors in payoff estimates. Then,
we provide a sequential algorithm with reduced selections from option combinations that
are irrelevant to evaluating candidate Nash, correlated, cumulative prospect theory or
other equilibria. We also provide an efficient formula to estimate the chance that given
Nash equilibria exists, provide convergence guarantees relating to general equilibria, and
provide a stopping criterion called the estimated expected value of perfect off-line
information (EEVPOI). The EEVPOI is based on bounded gains in expected utility from
further off-line experimentation. An example of using a simulation model to illustrate all
the proposed methods is provided based on a cyber security capture-the-flag game. The
example demonstrates that the proposedmethods enable substantial reductions in both the
number of test runs (half) compared with a full factorial and the computational time for
the stopping criterion.
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as “Decision Analysis. Copyright © 2020 The Author(s). https://doi.org/10.1287/deca.2020.0412, used
under a Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/.”
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1. Introduction
In many realistic situations, the individual decision
maker is not in complete control of all factor settings
that influence outcomes. Instead, multiple decision
makers select options and receive rewards that depend
on the selections made by all players (Nash 1951). In
many of these situations, it can be helpful to estimate
the rewards for all possible player action combinations,
perhaps focusing on the combinations most likely to be
played. Here, we seek efficient experimental methods
and stopping criteria to estimate mean rewards or
utilities to support decision making in which the
starting point is access to low-consequence experi-
mentation, for example, engagement simulations or
experimental war-games.

One well-studied set of action combinations of po-
tential interest is Nash equilibria, which involves set-
ting options such that no player could benefit through
individual adjustments. The relevance of Nash equi-
libria is rationalized by expected utility theory (EUT,
von Neumann and Morgenstern 2007). Many other
explanations for the relevance of Nash equilibria have
been provided in the literature. A common view is the
“self-enforcing” agreement relating to possible com-
munications between players before play (Branden-
berger and Dekkel 1987). In part because of the possi-
bility of these agreements, war-game or other game
designers can use the structure of the equilibria to
suggest system improvements or other incentives to
make the equilibria more desirable, that is, “mechanism”
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design (Conitzer and Sandholm 2002, De Clippel
et al. 2018).

Correlated equilibria (Aumann 1987) and cumula-
tive prospect theory (CPT) equilibria are generaliza-
tions of Nash equilibria (Tversky and Kahneman 1992,
Keskin 2016, Phade and Anantharam 2019). More
general equilibria have motivations that include the
subjective nature of probabilities and the irrationality
of decision makers. Selten and Chmura (2008) study
multiple types of equilibria and demonstrate that some
make more accurate predictions of human behavior
than Nash equilibria. The purpose of this article is to
provide algorithms for pre-experiments “off-line” to
support a variety of equilibria estimates and related
mechanism design objectives.

Player rewards are often not known with certainty
by all the players. This uncertainty may be an intrinsic
property of the game requiring strategies for mitigation
(e.g., see Harsanyi 1967). More commonly perhaps, it
may be possible to learn the rewards and treat them
afterward as known constants. It is possible that some
apparent violations of EUT motivating relevant gen-
eralizations such as CPT (Keskin 2016, Phade and
Anantharam 2019) might relate to parametric uncer-
tainty rather than irrationality. Also, much research
addresses how players can learn to reduce the uncer-
tainty by repeatedly playing the real game (e.g., see
Chapman et al. 2013, Foster et al. 2016). For these
problems, Nash equilibria are sometimes not consid-
ered to be relevant. Instead, learning the so-called no-
regret decision options (analogous to Nash equilibria)
is an important objective. Yet, what if the parameters
are unknown and the game is not repeated?

To overview, we start pregame preparations with
unknown payoff matrices but also with an ability to
experiment off-line; for example, we have a simulation
model.We play the game off-line many times, choosing
actions for each player following our experimental
planning and analysis methods. In each run, we ob-
serve the payoffs for all players. Then, we use meta-
models to predict all the mean payoffs and determine
whether off-line experimental stopping conditions are
met. Our goal is to predict the information needed to
support decision making, for example, the Nash or
cumulative prospect theory equilibria. With off-line
experimentation complete (at least temporarily), the
decision maker can either redesign the related systems

(e.g., mechanism design of a combat aircraft) and/or
play the actual game (i.e., play the real game).
Therefore, this paper is focused on a new problem.

The decision maker can reduce parametric uncertainty
using so-called off-line experimentation for variance
reduction similar to risk reduction (Delquié 2012). For
example, off-line testing might involve a simulation
or a low-consequence pregame period. Even though
the experiments are off-line, they are not free. For ex-
ample, creating test ranges and performing sets of war-
games might cost billions of dollars. Consider that one
player may have 10 or more options, as may the op-
ponent. Then, off-line experimentation would need to
support the estimation of literally hundreds of payoff
parameters from simulation or real-world tests, which
may have replication or other errors.
The original examples of games in the management

science literature include the design of advertising
strategies and military tactics (Shubik 1955, 2002). In
the context of modern online advertising, the internal
working of the ad-placement algorithms and the de-
cisions of potential customers create an opaque game
system. Through relatively inexpensive experimen-
tation on test markets, decision makers can develop
analytical models, predict estimated rewards, and
enumerate equilibria to facilitate large-scale cam-
paigns. Similarly, in military (or cybersecurity) con-
texts, simulation models with inputs from red and
blue teams can be tested with replication to produce
the inputs for game-theoretic studies, leading to fur-
ther insights into system vulnerabilities and strategic
policy selections.
This paper makes several important contributions:
1. A new class of experimental design problems is

introduced that supports the enumeration of equi-
libria relevant to predicting behavior or mechanism
design. The empirical exploration of off-line systems
can leverage the need to explore in detail option
combinations that relate to settings that decision
makers are likely to select.
2. A tractable and scalable sequential algorithm

for off-line experimentation to support single-period
games is provided. Empirical models are developed
and used to predict the expected rewards, and the
initial batch of experiments minimizes the prediction
variance over the player option combinations of in-
terest. The algorithm converges to the true equilibria
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(Nash, correlated, cumulative prospect theory, or
other) with probability one.

3. To clarify the convergence properties, an ana-
lytical formula for the probability that specific Nash
equilibria exist as a function of the available inputs
is included. Monte Carlo can be applied for other
equilibria. The probability relates to an integral over
a multivariate normal distribution with inputs that
depend on the data and often realistic assumptions.

4. Demonstrationof thenovelmethods forasimulation-
based, cybersecurity capture-the-flag (CTF) red team/blue
team game is given. By planning and executing experi-
ments involving inputs from more than one decision
maker, advice is provided for participants in up-
coming games as well as insights for game or sys-
tem designers.

The rest of this paper is organized as follows. Section 2
introduces the notation and reviews studies of deter-
ministic games, gaming under uncertainty, and rele-
vant empirical modeling and experimental design
methods. Section 3 combines the previous results to
provide an initial heuristic procedure and an aug-
mentation algorithm for equilibria estimation. Section 4
characterizes the experimental methods with respect
to chances for identifying the true equilibria both for
finite samples and asymptotically. Section 5 describes
an application in cybersecurity. Section 6 offers con-
clusions and opportunities for future work. Note that
some of the details about the cybersecurity case study
are omitted because of space limitation, but these
appear in the appendix.

2. Literature Review
This research combines methods and results from the
game theory and experimental design literatures. We
begin by introducing the notation. Then, we describe
the literature and concepts relating to the basic game
formulation, empirical modeling methods, and rele-
vant experimental design results.

2.1. Notation
Our notation contains elements from both the game
theory and experimental design literatures. Letm and n
be the number of real game options for players A and B,
respectively. We use Aij and Bij as the reward if
player A selects option i and player B selects option j for

players A and B, respectively. Also, Âij and B̂ij are the
associated estimated quantities. Vectors µA and µB with
dimensions mn are the vectorized mean values of the
matrices A and B, respectively, with joint (2mn)×
(2mn) covariance matrix Σ̃AB. Let q be the number of
Nash equilibria (either true or estimated, depending on
the context). The number and location of the equilibria
are uncertain because of our uncertainty about the
rewards or, equivalently, the payoffs. The real game
decision variables are wA and wB, which represent
probability over the m and n options for players A
and B, respectively. The decision variable wC would
apply to a third player. The scalars αi and βi represent
optimal payoff values that players A and B achieve at
Nash equilibria i, and all the candidate equilibria are
(wi

A,w
i
B) for i � 1, . . . , q or simply (w0

A,w
0
B) for a specific

candidate under consideration. Equilibria are “pure” if
the vector has probability one on a single action or
“mixed” otherwise. The vectors e and l have all entries
equal to one and dimensionsm and n, respectively (and
o is for player 3). For three players, the tensors A, B, C
are payoff cubes.
Here, each player action represents a combination of

factor-level settings. Also, we use regression models to
predict themean rewards for all combinations of player
actions. Let K represent the number of regression
model terms andN denote the number of experimental
runs. The initial number is N0, and MA and MB are the
number of decision factors for players A and B, re-
spectively. The assumption parameters βA and βB re-
late model coefficients for predicting the player A and
player B reward matrices, respectively. The corre-
sponding estimated quantities are β̂A and β̂B. The
standard deviations of repeated experimental outputs
are σA and σB under the simplest equal variance as-
sumption considered.
In the context of either linear regression or Gaussian

stochastic regression (GSR) models, the random errors
are N dimensional vectors εA and εB for players A
and B, respectively. For GSR, the correlation function
between points is φ and the covariance matrix is C.
Because of experimental uncertainty, the existence of a
candidate equilibrium (as defined in Section 3) is un-
certain with probability pN(x0, y0).
Decision factors represent dimensions along which

specific player options are available. For example,
in a cybersecurity capture-the-flag example, player 1
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has choices relating to whether to try to exploit the
firewall or pivot immediately to the internal machine.
We say that the factor is “firewall pivot” and the
levels are “first” and “never,” which means that
options or player policies are referred to as a com-
bination of factor levels. In this example, we are
implying that the player policies are designed off-line
before the real game begins and then followed. Our
analysis activity is intended to help the players de-
sign these policies. We believe that the decision factor
decomposition of the strategy space is relevant for
many real-world situations in which key policies are
effectively set in a single round, for example, the com-
binations of chess openings and team preset strategies
for cyber CTF.

The experimental design decision variables include
xA,k,l and xB,k,r for the setting selection for an experi-
mental run indexed by k, decision factors l and r, and
players A and B, respectively. The vectors xA,k and xB,k
areMA andMB dimensional vectors of settings for run k
for players A and B, respectively, with (x′A,k |x′B,k) in the
region of interest set Se. Corresponding values relate to
the decision options in the game, which may be as-
sumed to represent a discretization of the factor levels:
x̃A,i,l and x̃B,j,r are the game settings for playerA, option i,
and decision factor l and for Player B, option j, and
decision factor r. These are x̃A,i and x̃B,i indexed to run i
in vector form. The parameters ri,j weight the option
combinations by subjective importance, all set to one by
default. The vector f(xA, xB) is K dimensional and in-
cludes the model terms (e.g., one and xA,2xB,1). The
design matrix X is N ×K corresponding to the model
terms and experimental runs (for coefficient estimation).
The vectors YA and YB are N dimensional response
values of players A and B at the experimental points.
These responses could be simulation game scores or the
income from test markets.

The designmatrix X̃ ismn×K based on the real game
available options (for reward matrix estimation). In-
termediate matrices for calculating equilibrium prob-
abilities are W1 and W2, which are m× (mn) and
n× (mn), respectively. Also, T(m, n) is an (mn)× (mn)
permutation matrix. A key intermediate random vec-
tor, Z, has dimension (m + n).

In the context of sequential augmentation experi-
mentation, the set of irrelevant option combinations for
establishing whether all candidates are equilibria is
Sirrelevant, and the associated random search parameter
is pirrelevant.

2.2. Bimatrix and Multiplayer Games
In the standard single-period (bimatrix) game, player A
sets the probability vector wA, and player B sets the
probability vector wB. The standard formulation as-
sumes that the reward or payoff matrices A and B are
known. We preliminarily entertain this (often unreal-
istic) assumption for the sake of reviewing a seminal
contribution of Nash (1951). With known A and B, the
rewards received for the players are derived using the
joint formulation

max
wA

w
′
AAwB

s.t e
′
wA − 1| � 0;wA ≥ 0,

max
wB

w
′
ABwB

s.t l
′
|wB − 1 � 0;wB ≥ 0. (1)

The payoff values may, in general, represent mean
profits or mean utilities. Here, we propose regression-
based prediction of payoffs A and B from off-line ex-
periments, and the assumption that these matrices
represent mean utilities.
The joint formulation in Equation (1) leads, with-

out loss of generality, to Nash equilibria (wi
A,w

i
B) for

i � 1, . . . , q. Selections not among these equilibria indi-
cate (potentially) irrationality. Each Nash equilibrium
satisfies the well-known property that player A cannot
do better in the first optimization than wi

A if player B
does wi

B, and player B cannot do better in the second
optimization than wi

B if player A does wi
A. Players can

benefit by knowing the equilibria because they can select
among them to maximize their game rewards. Game
designers or system owners can benefit from knowing
them because they may want to design incentives for
players to change their behaviors.
Generalizations to multiplayer games have been

explored extensively, including generalizations of
Nash equilibria (e.g., Phade and Anantharam 2019).
Yet the numbers of rewards need to be estimated and
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the notational complexity grow with the number of
players. For example, consider the extension of Nash
equilibria from a bimatrix game to a three-player
game. The payoff cubes are A, B, C and “⊗” is the
Kronecker product. Nash equilibria satisfy (Lee and
Baldick 2003)

A ⊗ [
wi

A, w
i
B, w

i
C

] ≥ A ⊗ [
wA, wi

B, w
i
C

]
for all wA ε RN1 ,

wA ≥ 0, w
′
Ae � 1,

B ⊗ [
wi

A, w
i
B, w

i
C

] ≥ B ⊗ [
wi

A, wB, wi
C

]
for all wB ε RN2 ,

wB ≥ 0, w
′
Bl � 1, and

C ⊗ [
wi

A, w
i
B, w

i
C

] ≥ C ⊗ [
wi

A, w
i
B, wC

]
for all wC ε RN3 ,

wC ≥ 0, w
′
Co � 1. (2)

2.3. Equilibrium Conditions
Even with known A and B, the general problems
of finding the number of equilibria q and the actual
equilibria (wi

A,w
i
B) are NP-hard in terms of the numbers

of options m and n (Chen and Deng 2006, Conitzer and
Sandholm 2008, Daskalakis et al. 2009). However, state-
of-the-art solution methods can practically enumerate
equilibria for problems in which both players have
hundreds of options (Savani and von Stengel 2015).
Also, necessary and sufficient conditions for the equi-
libria (Mangasarian and Stone 1964) relate to the exis-
tence of scalar α0 and β0 satisfying

w0′
AAw0

B − α0 � 0,
w0′

ABw0
B − β0 � 0,

Aw0
B − α0e≤ 0,

B
′
w0

A − β0l≤ 0
e
′
w0

A − 1 � 0; w0
A ≥ 0, and

l
′
w0

B − 1 � 0; w0
B ≥ 0. (3)

More general multiplayer conditions such as those in
Equation (3) are available (Phade and Anantharam
2019). The key features of all correlated equilibria only
involve the rows and columns associated with nonzero
values of wA and wB.

2.4. Empirical Prediction of Payoff Matrices
Key to our approach is the use of planned experiments and
empirical regression models to predict simultaneously all

the mean parameters in both payoff matrices A and B.
Whereas the decision variables are weights or
probabilities (i.e., wA,wB) for real games, the em-
pirical model building decision variables are the
factor-level settings (i.e., xA,i, xB,i) for off-line ex-
perimental games. The experiments can be off-line
or not “real” in the sense that they do not require
playing the game; for example, one can experi-
ment on a simulation model of the game as we il-
lustrate for our cybersecurity-planning example in
Section 5. The experiments could also be rela-
tively low-consequence pre-experiments, for exam-
ple, involving test markets.
Consider that system options are potentially com-

binations of factor levels; that is, option combination or
run i is represented by the settings (xA,i, xB,i). The
standard linear model functional form is f′(xA,1, xB,1).
The “design” matrix (e.g., see Goos and Jones 2011) is

X �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ f′(xA,1, xB,1)

⋮
f′(xA,N , xB,N)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠. (4)

Gaussian process regression is a generalization of
ordinary linear models (e.g., see Gorodetsky and
Marzouk 2016). The multivariate expressions of the
rewards, YA and YB, derive from model coefficients,
βA and βB, and random errors, εA and εB:(

YA
YB

)
�
(
XβA
XβB

)
+
(
εA
εB

)
, (5)

where the random errors could derive from simula-
tion lack of repeatability, for example, Monte Carlo
random errors in cyberattack simulations. A common
assumption is that the random errors follow a multi-
variate normal (MN) distribution with variance co-
variance matrix, ΣAB:(

εA
εB

)
~ MN[0,ΣAB]. (6)

Here, we consider both the standard ΣAB � σ2I linear
model regression assumption and a more general GSR
assumption in terms of scalar variance parameter, τ;
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variance, σ; directional parameters, θk; and variance-
covariance matrix, C. This gives

ΣAB � Iτ2 +
[
C 0

0 C

]

whereC �

φ[(xA,1, xB,1),
(xA,1, xB,1)] ⋯

φ[(xA,1, xB,1),
(xA,N , xB,N)]

⋮ ⋱ ⋮

φ[(xA,1, xB,1),
(xA,N , xB,N)] ⋯

φ[(xA,N , xB,N),
(xA,N , xB,N)]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
andφ

[(xA,i, xB,i), (xA,j, xB,j)]
� σ2exp

[∑n
k�1

((xA, i, xB, i) − (xA, j, xB, j)
θk

)2]
.

(7)

In our case study, we consider only categorical factors,
so continuous variable GSR is not relevant. Yet we
believe that the flexibility of GSR is critical for problems
involving continuous factors, and specific results ap-
ply to the more general GSR assumptions as we clarify.
Using the standard linear model case assumption
(C � 0), the least squares coefficient estimates are β̂A �
(X′X)−1X′YA and β̂B � (X′X)−1X′YB.

Then, the payoff matrix estimates, Â and B̂, can be
predicted using the regression in their vectorization
forms, vec(Â) and vec(B̂), and a full factorial design
matrix X̃:

vec(Â) �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Â1,1

⋮
Ân,1

⋮
Âi,j

⋮
Ân,m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� X̃β̂A , vec(B̂) � X̃β̂B, andwhere

X̃ �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f′(x̃A,1, x̃B,1)
⋮

f′(x̃A,n, x̃B,1)
⋮

f′(x̃A,i, x̃B,j)
⋮

f′(x̃A,n, x̃B,m)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (8)

2.5. Experimental Design
It is well known that the accuracy of the empirical
model greatly depends on the experimental design
points used in its construction. In our game context, the
experimental runs are pairings of level settings chosen
by both players: (xA,1, xB,1), . . . , (xA,N , xB,N). The accu-
racy also depends on the discrete points that form the
options for the game: (x̃A,1, x̃B,1), . . . , (x̃A,m, x̃B,n). Typi-
cally, perhaps, there may be many more combina-
tions of player options than experimental budgets can
afford, that is, mn≫N. This makes the use of opti-
mization particularly critical to permit prediction of the
payoff matrices and, thus, accurate estimation of the
Nash equilibria.
The accuracy of a linear model also depends on the

terms included or the so-called functional form implied
by the vector functions fA′(xA,1, xB,1) and fB′(xA,1, xB,1)
for deriving estimated payoff matrices Â and B̂,
respectively. A concise and relevant functional form
includes only the first order terms and players A
and B interactions:

fA′(xA,1, xB,1) � fB′(xA,1, xB,1)
� (1 xA,1 ⋯ xA,MA xB,1 ⋯ xB,MB

xA,1xB,1 ⋯ xA,MAxB,MB). (9)

For continuous variables, more detailed and accurate
models may also be of interest, including adding
quadratic terms, for example, x2A,1. The standard re-
gression model with parameters β̂A and β̂B to predict a
generic mean reward is

ŷA � f′(x̃A, x̃B)β̂A and ŷB � f′(x̃A, x̃B)β̂B and

ŷB � f′(x̃A, x̃B)β̂B. (10)

These models have prediction variances of the form

var [ ŷA(xA, xB)] � σ2Af
′(xA, xB)(X′X)−1f(xA, xB) and

var[ ŷB(xA, xB)] � σ2Bf
′(xA, xB)(X′X)−1f(xA, xB). (11)

A natural objective to generate the initial experimental
points is to minimize the average prediction errors over
the lattice of player options. The standard prediction
variance formula yields the following experimental
design formulation. Gorodetsky and Marzouk (2016)
provide a formulation relevant to Gaussian process
regression. Here, we focus on an initial design with the
linear model terms because our application has only
categorical variables.
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Assume that the relevant variance is σ2A (could be σ2B)
and ri,j is the weight for player A, game option i and
player B, game option j. In our example, we assume
that all option combinations are equally of interest
(ri,j � 1) at the start of experimentation, but more
general assumptions could be important. Therefore,
weighted prediction variance (WPV) reduces to the
average prediction variance (APV), and the optimiza-
tion is over points in the experimental set Se. Then, the
WPV formulation, including the relevant option com-
binations for a fixed number of runs, N, is

Minimize :
(x′A,1,x′B,1), . . .∈Se

σ2A
mn

∑n
j�1

∑m
i�1

ri,jf′
(
x̃A,i, x̃B,j

)(X′X)−1f(x̃A,i, x̃B,j).
For the ri,j � 1 case, the APV can be simplified as

Minimize :
(x′A,1,x′B,1), . . .∈Se

σ2A
mn

Tr
[
X̃′X̃(X′X)−1], (12)

where mn is the number of decision points; the number
of runs, N, is fixed by the dimensions of X; and “Tr” is
the trace or sum of the diagonal elements. Even with
only linear regression modeling, the APV formula-
tion in Equation (12) is NP-hard (Ko et al. 1995).
However, using the Meyer and Nachtsheim (1995)
coordinate exchange algorithm with 1,000 random
starting points, as suggested by Goos and Jones (2011),
all the problems considered here were approximately
solved in 10 seconds to within 0.1% of optimality
with JMP® software.

3. Experimental Procedures
In this section,we combine the previous results to create a
one shot and sequential empirical equilibrium enumer-
ation procedures. Also, we describe decision making
about the initial number of experimental runs (N0).

3.1. Initial Equilibria Estimation Procedure
Procedure 1 begins by optimally planning and exe-
cuting off-line test runs, for example, game simulations.
Then, the payoff matrix inputs to the bimatrix game
formulation are predicted. Finally, the estimates can
be used to enumerate the Nash or other equilibria
with standard equilibrium enumeration methods (e.g.,
Savani and von Stengel 2015) based on the approximate
assumption that the bimatrix inputs in Equation (1)
are known.

Procedure 1 (Initial Experimentation and Equilibria
Estimation).
1. Identify the factor levels for experimentation

and mn game combinations of interest.
2. Solve the APV formulation in Equation (12) with

N0 runs (see Section 3.2 for choosing).
3. Collect experimental data following the optimal

plan to derive the vectors YA and YB.
4. Estimate the empirical model parameters, for

example, using least squares estimation.
5. Estimate the payoff matrices Â and B̂ using

coefficients β̂A and β̂B with Equation (8).
6. Derive the candidate equilibria, (wi

A,w
i
B) for i �

1, . . . , q, for example, by solving Equation (3) as-
suming A � Â and B � B̂.

In general, candidate equilibria from empirical pro-
cedures (such as procedure 1) may not be true equilibria
of interest. This follows because experimental random
errors (and model bias) can make it so that A≠ Â and
B≠ B̂. Yet, with sufficiently large experiments, that is,
N≫ 0, the empirically derived equilibria can be ex-
pected to converge to the desired equilibria as we de-
scribe in Section 4.

3.2. Average Prediction Variance Designs
As mentioned previously, the APV objective offers a
natural formulation for initial experimentation. Intui-
tively, if the variances of parameters Â and B̂ are
minimized, the chances of identifying key insights and
the correct equilibria improve. Also, excluding inter-
actions from the model that are not critical, for ex-
ample, third order or higher interactions, is a technique
commonly used in many types of experiments to limit
costs (Goos and Jones 2011). In bimatrix games, the
interactions between player one and player two vari-
ables are intuitively critical for identifying equilibria.
Related results can likely be established rigorously
because, without interactions, players could optimize
separately, making the games uninteresting to play and
study. Higher order interactions are likely critical for
games with multiple players. Therefore, regression
model forms need to be changed to consider multi-
player games.
Selecting the initial number of runs,N0, unavoidably

involves some amount of subjectivity. In general, N0,
values greater than or equal to the number of model
terms, K, are desirable so that the estimation problem is
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fully determined. Yet setting N0 at much less than the
full number of option combinations, mn, is also de-
sirable to reduce costs.

Table 1 shows the N0 � 24 experimental plan used in
the cybersecurity CTF case study. Additional infor-
mation about the five factors involved is provided in
Section 5. Here, we simply note that the model form in
Equation (9) includes the three-level categorical factor
firewall pivot (xA,i,1) and K � 16 terms.

Using JMP software, it is possible to solve the APV
formulation with equal weights (ri,j � 1 for i � 1, . . . ,m
and j � 1, . . . ,n) for varying numbers of runs. Figure 1
shows the plot of the average prediction variance for
these optimal designs. The plot shows the typical
“elbow” curve such that incurring additional expense
beyond a certain point carries diminishing returns for
prediction accuracy. This explains the choice ofN0 � 24
for the case study shown in Table 1. Note that the full
factorial experimental design is APV optimal or near
optimal withN � 48 for this problem. YetN � 48 offers
only an incremental benefit for prediction accuracy as
evidenced in Figure 1 on the right-hand side.

It is true, however, that using a design with N > 16
(the minimum number for estimating the model we
employ) could permit a more complete model form
than the one in Equation (9) to be fitted. Yet, in the
context of the case study, the resulting model would
(with high probability, see Section 5) result in the same
Nash equilibrium being identified with increased ex-
perimental cost.

3.3. An Augmentation Procedure
After initial experimentation and equilibria estima-
tion, significant uncertainties can remain; that is, the
variances in the Â and B̂ estimates in Equation (12) may
not be negligible, leading to uncertainty about the
relevant equilibria. This depends on the variances of the
experimental random errors σ2A and σ2B and, possibly,
on the bias from the model form approximation in
Equation (9). The initial procedure unavoidably gen-
erates at least a single candidate equilibrium because of
the fundamental equilibrium existence theorem and the
enumeration algorithms (Nash 1951). Intuitively, some
experimental options are irrelevant to establishing

Table 1. Average Variance Experimental Design for Cybersecurity Case Study with Five Factors and the Indexed
Option Selections

Run Firewall pivot (xA,i.1) Tenacity (xA,i.2) Start (xB,i.1) Forensic firewall (xB,i.2) Tenacity (xB,i.3) Player 1 Player 2 YA,i YB,i

1 First Persist Firewall Never Persist 1 3 40.7 60.8
2 Never Persist PC Inspect firewall Move on 3 5 63.2 50.5
3 Never Persist PC Never Persist 3 4 52.6 30.3
4 Wait Persist Firewall Never Move on 2 7 50.8 64.6
5 Never Move on Firewall Inspect firewall Persist 6 1 64.1 58.0
6 Never Move on PC Inspect firewall Move on 6 6 47.7 64.0
7 Never Persist Firewall Inspect firewall Persist 3 1 63.9 56.8
8 Never Move on Firewall Never Move on 6 7 41.5 70.7
9 Wait Persist Firewall Inspect firewall Persist 2 1 54.1 61.4
10 Wait Persist PC Inspect firewall Move on 2 6 51.6 47.8
11 Never Persist Firewall Never Move on 3 7 52.4 67.6
12 Wait Persist PC Never Persist 2 4 49.8 28.9
13 Wait Move on Firewall Never Move on 5 7 40.7 63.6
14 First Persist Firewall Inspect firewall Move on 1 5 37.7 60.7
15 First Persist PC Inspect firewall Persist 1 2 43.3 50.9
16 First Move on PC Inspect firewall Persist 4 2 35.9 56.2
17 First Move on PC Never Move on 4 8 38.8 31.6
18 First Move on Firewall Inspect firewall Move on 4 5 35.2 49.9
19 First Move on Firewall Never Persist 4 3 37.6 63.0
20 Never Move on PC Never Persist 3 4 50.4 26.1
21 First Persist PC Never Move on 1 8 53.5 28.0
22 Wait Move on Firewall Inspect firewall Persist 5 1 52.1 65.9
23 Wait Move on PC Never Persist 5 4 47.8 27.2
24 Wait Move on PC Inspect firewall Move on 5 6 50.5 55.1
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whether candidate equilibria are the true equilib-
ria. Here, the equilibria considered could be any type.
Yet the structure of the irrelevant set may vary.
Our proposed procedure applies to Nash and cor-
related equilibria because related conditions involve
only specific row and column values (Phade and
Anantharam 2019).

Definition 1. True equilibria are those that would be
derived after all parametric uncertainty is removed
(e.g., from suitable infinite experimentation).

Avoiding irrelevant experiments for finding true
equilibria is the driving objective of the proposed
random search method (procedure 2). A key parameter
of this method is the probability of selecting from
among the irrelevant options, pirrelevant. We suggest 0.05
as a default value to minimally evaluate likely un-
helpful options.

Procedure 2 (Augmentation Algorithm)
1. Update model (e.g., using sample mean esti-

mates for Â and B̂ or, alternatively, regression predic-
tion) and the associated candidate equilibria (wi

A,w
i
B)

for i � 1, . . . , q.
2. (Optional) If stopping conditions are met, stop.
3. Update the irrelevant set:
Sirrelevant � {i, j|wk

A,i � 0,wk
B,i � 0∀ k � 1, . . . , q}. (13)

4. Sample U ~ [0,1]
If U≤ pirrelevant, then random sample i, j∈ Sirrelevant.
Else, random sample i, j ∉ Sirrelevant.

5. Perform experiment at (x̃A,i, x̃B,j).
6. Go to step 1.

In the next section, the rigorous properties of the
irrelevant set, Sirrelevant, and the convergence properties
of procedure 2 are investigated. A stopping criterion
relating to the probability identifying true equilibria
is proposed.

4. Properties of Experimental Procedures
In this section, the finite sample and asymptotic con-
vergence properties of the procedures in Section 3 are
characterized. We start with the probability that can-
didates are correctly identified. Then, we apply the
results in the context of the initial experimentation and
analysis (procedure 1) and provide convergence results
of the augmentation methods (procedure 2).

4.1. The Probability That a Candidate Is a
Nash Equilibrium

Consider that A and B are uncertain in the sense that
the decision maker does not know fully what they are;
that is, there is “parametric uncertainty” that can be
reduced through experimentation. Given a current
parametric uncertainty level in the payoff values, there
is uncertainty about whether a candidate equilibrium
(w0

A,w
0
B)would be discovered to be an equilibrium if all

the parametric uncertainty were removed through
experimentation.

Definition 2. The probability that a candidate equilib-
rium (w0

A,w
0
B) is a true equilibrium, pN , is the chance

that the equilibrium is a Nash equilibrium for a random
realization of the payoff matrices, A and B.

Theorem 1 provides a method to calculate this prob-
abilitywithout the need for time-consumingMonte Carlo
simulation of entire enumeration procedures. It also
provides insights relating to the data sufficiency of
many types of empirical methods for Nash equilibria
estimation. The theorem starts with a given candidate
equilibrium (w0

A,w
0
B), which is a pair of probability

vectors. The theorem is based on assumed known
values for the means (µA,µB) and variances (VA,VB) of
the vectorized payoff matrices, that is, vec(A) and
vec(B). A key permutation matrix is T(m,n), which
relates vec(B′) to vec(B). These payoff matrices are

Figure 1. (Color online) Minimum Average Variances for
Designs with Variable Run Numbers (N)
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assumed to be multivariate normally distributed,MN,
which is an often-relevant assumption for estimates
derived from regression models. This theorem is rele-
vant for general GSR, which is also based on a multi-
variate normal distribution, that is, not merely least
squares regression.

Theorem 1. Assume that the payoff matrices A and B are

multivariate normally distributed: [vec(A)vec(B) ]~ MN[(µA
µB

),
Σ̃AB]. Then, the probability that the candidate feasible so-
lution (w0

A,w
0
B) is a Nash equilibrium for a random instance

of A and B, pN, is

pN(w0
A,w

0
B)�Pr({Z1≤0}∩  {Z2≤0}∩  . . . {Zm+n≤0}},

(14)

where Z is a random m + n dimensional vector. The dis-
tribution of Z is defined in terms of T(m,n), which is a
matrix that converts the vectorization of an m×n matrix
into its transpose vectorization as

Z~MN
[(

W1µA
W2µB

)
,
[
W1 0
0 W2

]
Σ̃AB

[
W1 0
0 W2

]′]
, (15)

andwhereW1 �
(
w0′

A ⊗
(
I − ew0′

A

))
and

W2 �
(
w0′

A ⊗
(
I − lw0′

B

))
T(m,n). (16)

Proof. We seek to show that the event in Equation (14)
is equivalent to the necessary and sufficient conditions
in Equation (3) (Mangasarian and Stone 1964). If this is
demonstrated, the probability in Equation (14) is the
probability that (w0

A,w
0
B) is a Nash equilibrium. The

last sets of constraints in Equation (3) are satisfied
automatically because (w0

A,w
0
B) is a feasible solution.

The first two constraints in Equation (3) are α0 �
wA0

′
AwB0 and β0 � wA0

′
BwB0. Plugging these into

the following inequalities in Equation (3) and rear-
ranging using scalar properties gives

AwB0 −w0′
AAw0

Be � IAw0
B − e

[
w0′

AAw0
B

]
≤ 0(

I − ew0′
A

)
Aw0

B ≤ 0. (17)

Using the Knonecker product (⊗) and a standard
vectorization (vec) identity (Searle 1982) gives(

I − ew0′
A

)
Aw0

B � vec
((
I − ew0′

A

)
Aw0

B

)
�
(
w0′

B ⊗
(
I − ew0′

A

))
vec(A)

� W1vec(A) ≤ 0. (18)

Similarly, we have

B
′
w0

A

(
w0′

ABy0
)
l � IB

′
w0

A − l
(
w0′

B Bw0
A

)≤ 0(
I − lw0′

B

)
B

′
w0

A � (
w0′

A ⊗ (
I − lw0′

B

))
vec

(
B

′)
� (

w0′
A ⊗ (

I − lw0′
B

))
T(m,n) vec(B) � W2vec(B) ≤ 0.

(19)

Together, Equations (18) and (19) give m + n inequal-
ities. Introducing the random vector, Z, Equations (18)
and (19) become

Z �
[
W1 0
0 W2

](
vec(A)
vec(B)

)
≤
(
0
0

)
. (20)

Substituting the assumption for the multivariate payoff
matrices, vec(A) and vec(B), and using standard matrix
identities (Searle 1982), Z is multivariate normal:

Z~MN
[(

A1µA
A2µB

)
,
[
W1 0
0 W2

]
Σ̃AB

[
A1 0
0 A2

]′]
. (21)

Therefore, the necessary and sufficient conditions for
an equilibrium are satisfied if and only if each element
of the vector, Z, is negative. Then, pN(w0

A,w
0
B) is equal

to the probability that this condition occurs assuming
Equation (21). [

The central result in Theorem 1 is intuitive. Once
there is a candidate equilibrium, there is no need to
enumerate all the equilibria for thousands of model
scenarios for probability estimation. Instead, simula-
tions need only study whether the small number
of normally distributed parameters exceeds the other
normally distributed parameters involved in the
equilibrium. Equation (14) supports efficient esti-
mation while addressing correlated prediction esti-
mates and mixed equilibria, that is, fractional prob-
abilities. From the estimated equilibria, the player
may be able to see which equilibrium an opponent
would likely prefer (if there are more than one). If
there is only one equilibrium, as appears to be the case
in our cyber game example, it may be highly desirable
to play related settings.
Note that Theorem 1 could apply to uncertainty of

types other than parametric, that is, uncertainty not
caused from limited experimental data. For example, it
could relate to games with intrinsically random pay-
offs. Also, Theorem 1 permits the computationally
efficient estimation of Nash equilibria probabilities.
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The probabilities for more general equilibria, such as
correlated or cumulative prospect theory equilibria,
can, of course, be estimated using Monte Carlo simu-
lation. Further, regardless of the specific stopping
criterion applied, the information about the rewards
can support many types of decision support activities.
Next, we relate Theorem 1 to empirical uncertainties.

4.2. Application to Procedure 1
In real empirical investigations, the analyst does not
have the mean values of the payoff estimates, µA and
µB, and the true covariances, ΣAB. Instead, the analyst
has response data, YA and YB, which can be derived
from procedure 1. From this data, estimates can be
generated using regression, for example, linear re-
gression in Equation (8). Many types of regression
models are multivariate normal distributions. The
standard linear regression multivariate normal as-
sumption inspires the following corollary to Theorem 1,
which characterizes the finite sample properties of
procedure 1.

Corollary 1. Assume the experimental outputs derive from
a standard linear model with variances σ2A and σ2B, that is,

(YA
YB

)~ MN[(XβA
XβB

), [ σ
2
AI 0
0 σ2BI

]]. Also, the functional

form, f(xA, xB), for the design matrix, X, is the same as
for the prediction design matrix X̃. Further, procedure 1
is applied. Then, the probabilities that any given candidate
equilibrium (indexed by i) is a true equilibrium, pN(wi

A, w
i
B),

is given by Equation (14) substituting µA � X̃βA, µB �
X̃βB, (wi

A, w
i
B) � (w0

A,w
0
B), and

Σ̃AB �
[
σ2AX̃(X ′

X)−1X̃ ′
0

0 σ2BX̃(X′X)−1X̃′

]
. (22)

Proof. Establishing the conditions for Theorem 1 proves
that the probability applies. Applying procedure 1 in-
volves using the least squares estimators and gives

vec(Â) � X̃β̂A � X̃(X ′
X)−1X ′

YA (23)

such that each entry is a linear combination of normally
distributed random variables and, thus, is also multi-
variate normal. Similarly, vec(B̂) is multivariate normal.
The mean vector, µA, is (for mean zero random εA):

µA � E[vec(Â)] � E[X̃β̂A] � E[X̃(X ′
X)−1X ′

YA]
� E[X̃(X ′

X)−1X ′ (XβA + εA)] � X̃βA. (24)

Similarly, µB � X̃βB. The variance-covariance matrix is
derived using var[Tx] � Tvar[x]T′, where T is an ar-
bitrary matrix:

var
[
vec

(
Â
)] � var

[
X̃β̂A

]
� Var

[
X̃
(
X

′
X
)−1X ′

YA

]
� X̃

(
X

′
X
)−1X ′

var
[
YA

]
X
(
X

′
X
)−1X̃′

� X̃
(
X

′
X
)−1X ′

[
σ2AI 0
0 σ2BI

]
X
(
X

′
X
)−1X̃′

�
[
σ2AX̃

(
X

′
X
)−1X̃ ′

0
0 σ2BX̃

(
X′X

)−1X̃′
]
.

(25)

Therefore, the payoff matrix estimates are multivariate
normal with the prescribed mean and covariance, and
Theorem 1 applies. [

Remark 1. Corollary 1 inspires an approximate method
to estimate the probability that a given candidate
equilibrium, (w0

A,w
0
B), is a true equilibrium. Procedure 1

generates the regression estimates: β̂A, β̂B, σ̂
2
A, and

σ̂2B. Then, one can assume that β̂A � βA, β̂B � βB,
σ̂2A � σ2A, and σ̂2B � σ2B and use Equation (22) for inputs
to estimate the probability the equilibrium is a Nash
equilibrium from Theorem 1 in Equation (14). This
approach can function as a stopping criterion in
procedure 2, that is, stop when the estimated prob-
abilities for all equilibria exceed a threshold such
as 95%.

4.3. Irrelevant Experimental Options
Consider a list of candidate Nash equilibria from
procedure 1. Some of these candidates may not be true
equilibria. In determining the accuracy of the given
candidate equilibria, some experimental options are
irrelevant. Lemma 1 clarifies conditions under which
option combinations are known to be irrelevant to
equilibrium probability calculations.

Lemma 1. Assume that the payoff matrices A and B are
random. The probability that (w0

A,w
0
B) is a Nash equilibrium

depends neither on the values Ai,j with w0
B,j � 0, nor on the

values of Bi,j with w0
A,i � 0.

Proof. If we can show that the values in question are
irrelevant to establishing the necessary and suffi-
cient conditions to be an equilibrium in Equation (3),
the result is proven. From Equation (17), we have
(I − ew0′

A )Aw0
B ≤ 0, and from Equation (18), we have
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(I − lw0′
B )B′w0

A ≤ 0. From the proof of Theorem 1 (and
intuition), these are the only dependence that the
necessary and sufficient conditions have on the
values of the payoff matrices A and B. Therefore,
columns of Ai,j with w0

B,j � 0 are irrelevant, and so are
rows of Bi,j with w0

A,i � 0. [

Extending this result to all correlated equilibria us-
ing the generalized equilibria conditions (Phade and
Anantharam 2019) is proposed for future work. In a
problem with numbers of equilibria smaller than the
number of option combinations (q≪mn), few payoff
values are relevant. Intuitively, knowing that some
option combinations are irrelevant should down-weight
their importance in empirical data augmentation pro-
cedures. This suggests the application of the random
search procedure 2.

4.4. Convergence Results
For finite amounts of off-line data, there is some general
uncertainty about the Nash, correlated, cumulative
prospect theory, or other equilibria. Lemma 1 sheds
light solely on which experimental option combina-
tions are relevant with respect to a given list of equi-
libria. Focusing only on relevant experimental options,
therefore, could conceivably miss some of the equi-
libria, even in the limit of infinite experimentation.
Theorem 2 clarifies the implications for long-run ap-
plications of procedure 2 augmentation.

Theorem2. Assume the experimental outputs derive from a
standard linear model with variances σ2A and σ2B, that
is, (YA

YB
)~ MN[(µA

µB
), Σ̃AB] for finite Σ̃AB. Further, the

augmentation procedure is applied with sample mean-based
estimation and no stopping rule. Both

i. If 0< pirrelevant < 1 in the limit N→∞, then all true
equilibria are identified with probability one.

ii. If pirrelevant � 0 in the limit N→∞, then all identified
candidate equilibria are true (correlated or Nash) equilibria
with probability one.

Proof. If 0< pirrelevant < 1, then, in the limit, N→∞, we
have samplemean (YA)→µA and samplemean (YB)→µB
because of the central limit theorem with finite vari-
ances. This implies that (wi

A,w
i
B) for i � 1, . . . , q are the

equilibria. Assume that pirrelevant � 0 and the limiting
candidate set (wi

A,w
i
B) for i � 1, . . . , q. Then, the rele-

vant sample means converge, and the others are ir-
relevant to the candidate list.Without loss of generality,

we assume that samplemean(YA)→µA and sample
mean(YB)→µB. This gives the result for the candidate
correlated or Nash equilibria in both cases. [

Theorem 2 implies that focusing on the relevant set of
experimental options can increase the probability that
points on a given list of candidates are true equilibria.
Also, some amount of focus on (apparently) irrelevant
options could conceivably aid in the identification of all
the true Nash equilibria. This follows because lists of
equilibria from finite samples may be incomplete. The
implications of data from irrelevant combinations for
related regression model–based, sequential procedures
are a topic for future research.

4.5. A Stopping Criterion Based on the Expected
Value of Information

Even expanded notions of equilibria may not predict
behavior accurately. Therefore, the decision maker
may desire to entertain specific assumptions about the
policies of an opponent (or opponents), and then de-
cision making can be based on the expected value of
perfect information; for example, see Delquié (2012).
Assume that a specific w0

B is known or assumed, per-
haps from studying the off-line simulations or because
there is a single policy of interest. The estimated ex-
pected value of perfect off-line information (EEVPOI) is

EEVPOI� E
A,ε

[
max
wA

((
wA

′
(
Aw0

B

)
+εA

))]
−max

wA
E
A,ε

[(
wA

′
(
Aw0

B

)
+εA

)]
� E

A,ε

[
max
wA

(
wA

′
(
Aw0

B

)]
−max

wA

(
wA

′
(
Âw0

B

)
, (26)

where vec(A) ~MN[µ̂A,Σ̂A]with µ̂A are regressionmean
prediction covariance Σ̂A matrix estimates. Instead of
stopping off-line experimentation based on the Nash
or other equilibrium probability estimates, stopping
can be based on threshold values of the EEVPOI. In
other words, stop when the expected gain in the utility
(bound) is sufficiently small.

5. An Application to Red Team/Blue Team
Capture the Flag

For our application, we consider a simulated cyber-
security CTF red team/blue team game. This game
seeks to help train many types of students to learn
both cybersecurity basics and related policy decision
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making. Additional details about the game and the
discrete event simulation model are described in the
appendix. Briefly, Figures 2 and 3 show key tasks for
red and blue team players, respectively, with a port
scanner (e.g., NMAP or Unicornscan) being a program
to find IP addresses and scanning and exploiting ac-
tivities supported by many commercial software.

Next, we describe the application of experimental
methods described in Section 3. Zero-sum games have
(A � −B). By default, we assume that the game is not
zero sum to mirror real-life cybersecurity but con-
verting to a zero-sum game is not difficult.

In applying procedure 1, we identify the factor levels
for experimentation and mn game combinations of
interest. Figure 2 shows two player A variables: firewall
pivot (xA,i.1) and tenacity (xA,i.2). A major policy deci-
sion that the red team needs to consider is what to do
when it successfully exploits the firewall. Should it
pivot to attempting to use the firewall as a general-
purpose host, exfiltrating any data and launching ex-
ternal attacks or, alternatively, pivot to attacking the
internal host? Possible levels include using the firewall

first, waiting until after the internal host is exploited, or
never attempting to use the firewall other than to attack
the internal host (first, wait, or never). Intuitively,
firewalls rarely contain helpful data for exfiltration,
and the access of firewall hosts is generally inferior to
that of internal hosts. Another major policy choice for
attackers is when to give up attempting to use the hosts
that they compromise, that is, their tenacity. Levels
include giving up immediately upon failure (move on)
and never (persist).
Similarly, defenders have policy options as indicated

in Figure 3. Unlike attackers, defenders can start their
activities on either the firewall or the internal host
because of their insider access (firewall or PC). Also,
defenders can choose to do forensics on the firewall
(inspect firewall) or to ignore its state of compromise
(never inspect). Intuitively, forensic activities are time-
consuming, and the compromise state of the firewall is
not as important as the state of the internal host. Fi-
nally, the tenacity of defenders’ in patching attempts
can be set. They can give up immediately upon fail-
ing to find a patch (move on), or they can persist in

Figure 2. (Color online) CTF System Diagram, Red Team Tasks, and Factors: Firewall Pivot and Tenacity

Figure 3. (Color online) CTF System Diagram, Blue Team Tasks, and Factors: Start, Tenacity, and Forensics
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patching attempts (persist). Note that, in our analysis,
the game options are the same as the experimental level
combinations.

In step 2 of procedure 1, we formulate and solve the
APV experimental design problem in Equation (12)
with N0 = 24 runs. The solution is in Table 1 based
on the factor levels in Table 2. The choice of the number
of runs,N0 = 24, reflects a balance between experimental

economy and prediction model accuracy. It also rep-
resents the elbow point in Figure 1 as described in
Section 3. In step 3, we collect experimental data using
the SIMIO model indicated in part in Figure 4 with the
10 replicates following the optimal plan to derive the
vectors YA and YB. In step 4, we estimate the empirical
model parameters using least squares estimation with
the results shown in Table 3.
Figure 5 plots the prediction model showing the

interactions of player-level selections on the scores for
both teams (e.g., XA1 * XB1 for the first Player A–
Player B interaction). The most interesting interaction
relates to the choice of the red teamnever to pivot to use
the firewall. This choice benefits both teams unless the
blue team is persistent in its patching attempts. Intu-
itively, this occurs because exploitation of the firewall
permits the blue team to successfully patch the internal
host, making its later exploitation by the attackers
significantlymore difficult. Also, starting at the firewall
is generallymore beneficial for the blue team regardless
of the red team selections.
Then, in step 5, we estimate the bimatrix game pa-

rameters Â and B̂, for example, β̂A and β̂B using
Equation (8) as shown in Table 4. Enumerating the
equilibria that are solutions to Equation (3) by in-
spection or using standard methods (Savani and von
Stengel 2015) results in a single equilibrium as indi-
cated in Table 4 (bolded). It is also apparently the only
correlated equilibrium. The equilibrium is option 3

Table 2. Options as Factor-Level Combinations for the (a)
Red Team and (b) Blue Team

Panel A: Red Team

Option Firewall pivot Tenacity

1 First Persist
2 Wait Persist
3 Never Persist
4 First Move on
5 Wait Move on
6 Never Move on

Panel B: Blue Team

Option Start Forensic firewall Tenacity

1 Firewall Inspect firewall Persist
2 PC Inspect firewall Persist
3 Firewall Never Persist
4 PC Never Persist
5 Firewall Inspect firewall Move on
6 PC Inspect firewall Move on
7 Firewall Never Move on
8 PC Never Move on

Figure 4. (Color online) SIMIO Model of the Red Team Tasks that Change the System States (Along with Blue Tasks
Not Shown)

Allen, Hernandez, and Alomair: Addressing Parametric Uncertainty in Nash Equilibria
290 Decision Analysis, 2020, vol. 17, no. 4, pp. 277–298, © 2020 The Author(s)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

27
.1

11
.8

4.
24

3]
 o

n 
24

 M
ay

 2
02

3,
 a

t 1
7:

52
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



(never use the firewall and persist in using the internal
host) for the red team and option 5 (start at the fire-
wall, inspect the firewall, and move on if searching
for a patch fails) for the blue team. Notice the Nash con-
dition applies. The highest value in column (5) in Table 3,
Panel A corresponds to option 3, and the highest value
in row (3) corresponds to option 5 in Table 3, Panel B.

This candidate equilibrium is then evaluated using
10,000 simulations based on Equation (14). The result
predicts an estimated (approximate) 96.5% chance of
being a true equilibrium based on the right-hand side
brute force python code solution of each scenario. For
this brute force approach, the computation time is
approximately 8.9 hours on an i5-3475 3.2 GHz CPU
and python code. This estimate is approximate because
correlations between predictions are ignored.

Using the right-hand side of Equation (14), Monte
Carlo estimated the exact probability of 95.0% using
0.49 seconds on theMATLAB cloud. This demonstrates

the potentially critical computational advantage affor-
ded by Theorem 1 in computational efficiency and ac-
curacy. Therefore, also, procedure 2 immediately stops
using only 24 runs, which is half of a full factorial
(3× 2× 2× 2× 2 � 48 runs).
Similarly, if one assumes that player 2 will play

action 5 with probability one (w0
B), the EEVPOI can be

estimated to a good approximation using column (5) in
Table 4, Panel A. The table values give estimatedmeans. A
constant variance of 7.51 utility units squared is based on
the regression results. Then, the first term in Equation (26)
is 60.93, and the second term is 60.80 so that the EEVPOI
is 0.13 or 0.21%. This may be regarded as negligible
such that off-line experimentation can terminate.
The benefits of procedures 1 and 2 for hypothetical

players are clear. There are higher point values asso-
ciated with activities for the inner hosts, but deter-
mining sequence and when to give up is difficult. Yet,
by selecting the levels indicated by the candidate Nash

Table 3. Regression Model Summaries for (a) Red Team Score and (b) Blue Team Score

Panel A Panel B

Term Coef SE coef T-value P-value Term Coef SE coef T-value P-value

Constant 33.1 2.74 12.07 0 Constant 56.38 3.65 15.43 0
XA1-firewall-pivot XA1-firewall-pivot
Never 21 3.36 6.25 0 Never 22.5 4.48 5.03 0.001
Wait 14.1 3.36 4.2 0.003 Wait 20.28 4.48 4.53 0.002

XA2-tenacity XA2-tenacity
Persist 6.7 2.74 2.44 0.04 Persist −2.15 3.65 −0.59 0.572

XB1-start XB1-start
PC 3.87 2.74 1.41 0.196 PC −14.88 3.65 −4.07 0.004

XB2-forensic firewall XB2-forensic firewall
Never 3.4 2.74 1.24 0.25 Never −10.16 3.65 −2.78 0.024

XB3-tenacity XB3-tenacity
Persist 1.27 2.74 0.46 0.656 Persist 14.48 3.65 3.96 0.004

XA1-firewall-pivot * XB1-start XA1-firewall-pivot * XB1-start
Never PC −7.07 3.36 −2.11 0.068 Never PC −3.62 4.48 −0.81 0.441
Wait PC −4.58 3.36 −1.36 0.21 Wait PC −7.2 4.48 −1.61 0.146

XA1-firewall-pivot * XB2-forensic firewall XA1-firewall-pivot * XB2-forensic firewall
Never-never −15.13 3.36 −4.5 0.002 Never-never −0.08 4.48 −0.02 0.987
Wait never −9.43 3.36 −2.81 0.023 Wait never −2.9 4.48 −0.65 0.535

XA1-firewall-pivot * XB3-tenacity XA1-firewall-pivot * XB3-tenacity
Never persist 8.47 3.36 2.52 0.036 Never persist −35.58 4.48 −7.95 0
Wait persist 4.48 3.36 1.33 0.219 Wait persist −27.1 4.48 −6.06 0

XA2-tenacity * XB1-start XA2-tenacity * XB1-start
Persist PC 2.42 2.74 0.88 0.404 Persist PC −4.1 3.65 −1.12 0.294

XA2-tenacity * XB2-forensic firewall XA2-tenacity * XB2-forensic firewall
Persist never 2.45 2.74 0.89 0.398 Persist never 3.17 3.65 0.87 0.411

XA2-tenacity * XB3-tenacity XA2-tenacity * XB3-tenacity
Persist-persist −6.38 2.74 −2.33 0.048 Persist-persist 1.4 3.65 0.38 0.712

Note. Coef, coefficients; SE coef, standard error coefficients.
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equilibria, the player likely maximizes its payoffs in
point scores accounting for other players’ selections.

The benefits for game designers are also clear. Point
selections may be adjusted if the goal is to make de-
ception and decision making important aspects of the
game. After each iteration of point value changes by the
game designer, procedures 1 and 2 can be applied
to generate the equilibria and balance the game (all
equilibria have equal payoffs for both players). With
the proposed experimental methods, the simulation

times are reduced by a factor of two from the costs of
a full factorial, and the stopping condition times are
greatly reduced (8.9 hours to 0.49 seconds). Therefore,
approximate assurance is efficiently achieved such that
the derived equilibria are actual Nash equilibria of the
game irrespective of simulation replication errors.

6. Conclusions and Future Work
In many real management situations, payoff matrices
are not readily available, but the ability to experiment
off-line is. For example, the manager might have a
simulation model with inputs from multiple decision
makers or players. Also, there might be an ability to
conduct relatively inexpensive test marketing experi-
ments or sets of gaming exercises with a variety of
stakeholders. These considerations have motivated a
new class of experimental planning and analysis prob-
lems. We analyzed these problems and provided ex-
perimental plans for initial data collection, sequential
methods for efficient follow-up experiments, and stop-
ping rules, for example, stop when all candidate Nash
equilibria are likely true equilibria. Additionally, we
characterized the finite sample and convergence prop-
erties of the proposed experimental procedures.
In our case study game application, we demon-

strated the practical benefits of the proposed experi-
mentation and analysis procedures. These procedures
permitted the estimation of the Nash equilibrium
enumeration procedures at a fraction (half) of the off-
line experimental costs of full factorials. Reduction

Table 4. The Predicted (Mean) Payoff Matrices for Scores:
(a) Red Team and (b) Blue Team

Panel A: Red Team

1 2 3 4 5 6 7 8

1 34.68 40.97 40.53 46.82 39.80 46.08 45.65 51.93
2 53.26 54.97 49.68 51.39 53.90 55.61 50.33 52.03
3 64.16 63.37 54.88 54.09 60.80 60.01 51.53 50.73
4 34.37 38.23 37.77 41.63 33.10 36.97 36.50 40.37
5 52.94 52.23 46.92 46.21 47.20 46.49 41.18 40.47
6 63.84 60.63 52.12 48.91 54.10 50.89 42.38 39.17

Panel B: Blue Team

1 2 3 4 5 6 7 8

1 70.10 51.13 63.11 44.13 54.23 35.25 47.23 28.26
2 63.28 37.10 53.38 27.21 74.50 48.33 64.61 38.43
3 57.03 34.43 49.96 27.36 76.73 54.13 69.66 47.06
4 70.85 55.98 60.69 45.82 56.38 41.50 46.22 31.34
5 64.03 41.95 50.97 28.89 76.65 54.58 63.59 41.52
6 57.78 39.28 47.54 29.04 78.88 60.38 68.64 50.14

Figure 5. (Color online) Interaction Plots Showing Predictions for Scores: (a) Red Team and (b) Blue Team
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such as this could be a critical enabler as simulations
can take days to run and war-gaming exercises with
key stakeholders can be difficult to arrange, making
test runs extremely expensive. Also, the provided
formulas greatly reduce the computational burden
of the associated probability estimation process (from
8.9 hours to less than one second). At the same time,
the results here focus on single-period games with
deterministic payoffs. Limited results apply to cases
in which the payoffs may be intrinsically random
or estimated using Gaussian stochastic regression
(Theorem 1).

Therefore, many opportunities for further research
exist. First, efficient stopping rules such as the one in
Theorem 1 can be developed for equilibria that more
accurately predict human behavior than Nash equi-
libria, for example, cumulative prospect theory. Sec-
ond, the subject of off-line experimental planning and
analysis can be extended to address many other types
of games, for example, repeated, learning, and dis-
tributed games. Third, generalizing to more than two
players can be explored together with the associated
three-factor or higher order interactions.

Fourth, the use of equilibrium probability models for
improving the efficiency of sequential experimentation
procedures can be investigated. Fifth, issues about
approximate and mixed equilibria (e.g., see Feder et al.
2007) and related support points (pure strategy points
with positive probability) and empirical estimation-
related off-line supporting runs can be studied. Sixth,
many applications additional to cyber CTF game de-
sign can be explored, including test market design and
efficient methods for testing military systems building
on previous experimental design results (Johnson et al.
2012). Seventh, results can be generalized to address
cumulative prospect theory. Experiments can measure
irrationality (in addition to reducing parametric un-
certainty) as explored in Phade andAnantharam (2019).
Seventh, extensions to multifidelity experimental de-
sign are possible building on research in Huang and
Allen (2005). Finally, more advanced empirical mod-
eling methods than linear models can be considered,
including multifidelity modeling (possibly address-
ing real and off-line experiments), multiresponse,
and Gaussian stochastic regression (Kleijnen and
Mehdad 2014) methods can reduce total costs and
further extend the practical relevance of game-theoretic

analyses and be related to relevant and irrelevant option
combinations.
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Appendix A. The Proposed Cyber CTF Game
CTF games divide into two types: jeopardy style in which
all participants attack a static network and red team/blue
team exercises inwhich some participants attack and others
defend (Antonova et al. 2018). In this article, we propose a
red team/blue team CTF game and a simulation model of
that game. From our literature search, we believe that red
team/blue team game designs are relatively rare. We dif-
ferentiate in our terminology between actions (or equiva-
lently tasks) and policy options (or factor-level combina-
tions). Policy options are determined in an initial player
meeting and govern action selection sequences within the
game. Our expectation is that the game period is too short
for policy changes as only a small number of actions are
time feasible.

We believe that our proposed game offers multiple
benefits including the following:

1. It supports relatively rapid training: Both the red and
blue teams learn three actions, each of which requires only
approximately one hour to study. Students can train for six
hours (we estimate) and then play for three hours. At the
end, they will have an understanding of scanning for IP
address and vulnerabilities (e.g., bugs, weak passwords,
or out-of-date encryption), exploiting vulnerabilities (e.g.,
applying a software script to gain access or cause mischief),
patching vulnerabilities (i.e., applying code from vendors
of the software to remove the vulnerability), pivoting to
launch additional attacks (i.e., using the status gained
from an exploit to score points, such as launching more
attacks), exfiltration (i.e., stealing data), escalating privi-
leges (i.e., moving up to system administrator), and per-
forming simple forensic analysis (i.e., trying to find evidence
of intrusions). Of course, the student experiences are lim-
ited, and many attack options in the MITRE framework
(Strom et al. 2017) are omitted.

2. Actions are relevant to real-world cybersecurity pro-
fessionals: The activities in the game are like those conducted
currently by cybersecurity professionals and relate to mul-
tiple certifications.

3. Decision problems are relevant: Problems faced in-
clude pivoting options for the red team and starting options
for the blue team. These choices can greatly affect the ex-
pected outcomes.

Appendix B. Game Description
Some CTF games include the exploration of an extensive
network over multiple days. For example, the MERIT game
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covers a virtual small town. Our game focuses on a tiny
network model in part so that all activities can reasonably
occur within three hours. Figure B.1 shows the network
involving two hosts. We can imagine that one host is a
firewall (host #1) that is visible to the internet, and the other
(host #2) is either (a) a PC or (b) an advancedmanufacturing
equipment device, such as a networked 3-D printer. The
specifics do matter in relation to which vulnerabilities and
patches are relevant. Yet, for the purposes of our simulation
model, the game activities are simply modeled by the as-
sociated mean service times.

There aremanyways to define the cybersecurity state of a
computer host, which could be a PC, server, printer, ex-
ercise machine, 3-D printer, car, or cellphone. In the game
system, there are four levels relating to the severity of the
worst vulnerability on the host: low, medium, high, and
critical. Recently, we have considered adding another state-
based scheme including the presence of so-called “celeb-
rity” vulnerabilities, such as “Heartbleed,” a bug famous
enough to have its own logo ( ). Here, we consider only two
types of hosts, that is, hosts whose worst vulnerability
achieves a medium on the common vulnerability scoring
system scale and those whose worst vulnerability achieves a
critical score for simplicity. Critical vulnerabilities are often
so problematic that they can be seen externally to the or-
ganization and exploits are widely published. Then, hackers
may gain full or near full access to the host almost as easily as
by logging in with a known password.

Hosts can also be compromised in the sense that unau-
thorized personnel can have partial or full access. Therefore,
we consider hosts in four states as indicated in Table B.1.
If a host has a critical vulnerability on it, it is easier to
quickly and completely compromise it. If it is already
compromised, it can be of use to hackers who can “pivot” to
attack other hosts or exfiltrate data. Blue team personnel
naturally seek to identify whether hosts are compromised

and transform them into not-compromised hosts, which
have as many of their vulnerabilities patched as possi-
ble. Yet, of course, patching and forensic analyses take
time as does compromising hosts through manually ap-
plied exploits.
We imagine that the multiple members of both red and
blue teams follow the same workflow by agreement rather
than branching out individually, a choice that might seem
sensible given the limited amount of training. More com-
plicated networks and independent team members can be
considered in future work.

B.1. Red Team Actions
In our proposed game under development, we consider
three red team actions:

1. Run script to find visible host IP address(es) and
vulnerability scan: On virtually any computer, you can scan
to find the visible IP addresses, for example, using a port
scan program (e.g., NMAP). With an address, you can
scan the host for vulnerabilities, for example, using the
Nessus scanner from OpenVAS, Tenable Security, or the
Rapid7 scanner.

2. Exploit vulnerability on host and escalate privileges if
needed: After identifying the vulnerabilities present on the
target host—generally these are so-called “network” vul-
nerabilities because they are, in part, visible without full
access—you can look for associated available exploits. A
product such as Metasploit facilitates finding the exploits and
launching them. Depending on the level of the vulnerability
and the quality of the exploit, one might not gain sufficient
access to use the host. A privilege escalation activity may then
be possible to gain additional access.

3. Use host for external attacks or exfiltrate data: Once the
host is compromised and privileges have been achieved, the
host is ready for use, that is, to pivot. Pivoting to external
attacks (actually they are internal hosts in our game) is

Figure B.1. (Color online) Network Model for Game: (a) PC Version, (b) Equivalent Manufacturing Version

Table B.1. Four Host States Relating to Compromise and Vulnerability Status

Host state Compromise state Vulnerability status

1 Not compromised Critical and Medium Vulnerabilities
2 Not compromised Medium vulnerabilities only
3 Compromised Critical and medium vulnerabilities
4 Compromised Medium vulnerabilities only
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possible but risky in that the intrusion detection system or
firewall rules might identify the compromise and block ac-
cess. In fact, once access is blocked, personnel can easily
isolate that host. A less risky stepmight be to exfiltrate or steal
the information already on the host. Of course, most hosts do
not contain monetizable data (e.g., medical records or pos-
sibly credit card data).

Figure B.2 shows a workflow that connects the red
team actions. In the greedy version (Figure B.2(a)), the red
team immediately attempts to use the firewall for gain. In
Figure B.2(b), the red team is patient. Note that the workflow
implies that the red team can use a host with either external
attack or exfiltration but not both. Also, game rules dictate

that the red teammust attempt amajor activity before returning
to reuse a compromised host. By “alerts,” we mean decla-
rations that hosts are compromised that limit direct access
to attackers.

B.2. Blue Team Actions
Similarly, we consider three blue team (compound) actions:

1. Turn on host logging and vulnerability scan: There are
many logging options to record which hosts authorized or
unauthorized are doing during their sessions. Enabling
basic logging, for example, through the Windows menus,
can reasonably preserve privacy (sometimes) while facili-
tating effective forensic analyses of compromise. Also, the

Figure B.2. (Color online) Red Team Workflow: (a) Greedy Version, (b) Patient Version

Figure B.3. (Color online) Blue Team Workflow: (a) Start on the Left and Move Counterclockwise, (b) Opposite
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blue team needs to scan for vulnerabilities in a manner
similar to that used by the red team.

2. Search, download (if any), and apply patch (if any):
Once vulnerabilities have been identified, there are often
recommended patching or remediation actions provided by
the scanner. Still, sometimes the security personnel must
search the internet for patches and related information.
Sometimes patches must be downloaded manually and ap-
plied, often only after successfully demonstrating that they do
not interfere with needed software and services.

3. Do forensic analysis and reimage and notify if needed:
Even during a CTF game with only two hosts, it is not clear at
any given time whether a given host is compromised. Also,
log analyses are supported by many software programs, but
the process can be time-consuming. It might also fail to find
compromised hosts. If a host is found to be compromised,
there are often legal implications. Therefore, notification of
affected individuals is likely to be legally required.

Figure B.3 shows twoworkflows for blue teammembers.
One option is to start with the firewall like the red team,
hoping to patch it before the red team exploits it. Alter-
natively, they can start on the PC or 3-D printer, which is

associated with many more points or payoffs in the game.
They can try to patch the worst vulnerability on that host to
make it more difficult and time-consuming for the red team.
Note that the red team must start on the left-hand side
because the firewall is the only host visible to the internet.

Our scoring system assigns points to red and blue teams
based on the achievements of host compromises (minor)
and host uses (major) with an emphasis on success with the
internal host (#2). The blue team scores mirror the red team
scores with emphasis on successful forensic work on the
internal host.

Appendix C. Input Analysis
For time estimates for the tasks, we use YouTube videos
illustrating the actions in applications. By selecting vul-
nerabilities carefully, we believe that we can control the
service time distributions to some extent. Also, we believe
that cybersecurity activity times are associated with a high
coefficient of variation such that the exponential distribu-
tion might reasonably apply.

For one vulnerability for which codes are already loaded
and available, exploitation might be quick. For another,

Table C.1. Mean Time Estimates (in Minutes) and Probability Estimates with Supporting YouTube Videos Used to Ballpark
Initial Values for the Simulation

Parameter (property) Description Mean Supporting video or notes (if any)

HRserv1 Exploiting host with critical vulnerability 15 https://www.youtube.com/watch?v=ZT7VYsJvh2Q
HRserv2 Exploiting with medium & escalation 30 https://www.youtube.com/watch?v=RdnVC0kNxN4
HRserv3 Entering compromised host 2 Similar to a usual login
HRserv4 Entering compromised host 2 Similar to a usual login
HRharvC Pivoting to third party attack 20 https://www.youtube.com/watch?v=qIEHUUt2Wfc
HscanTime Mapping and vulnerability scanning 10 https://www.youtube.com/watch?v=hMKIIRhfk74,https://

www.youtube.com/watch?v=9LA3iQfGGLY
HRprob1&amp;2 Chance exploit works 0.5 Exploits can fail
HRharvNoC Discovering access is lost 5 Attempted logins and failure
lowCompScore Game score parameter 0 Chosen by the game designer
lowHarvScore Game score parameter 10 Chosen by the game designer
highCompScore Game score parameter 5 Chosen by the game designer
highHarvScore Game score parameter 25 Chosen by the game designer
HBserv1 Enabling logs & vulnerability scanning 15 https://www.youtube.com/watch?v=hTK0pywfmDE
HBserv2 Enabling logs & vulnerability scanning 5 Fewer vulnerabilities and prescanned
HBserv3 Enabling logs & vulnerability scanning 15 https://www.youtube.com/watch?v=hTK0pywfmDE
HBserv4 Enabling logs & vulnerability scanning 5 Fewer vulnerabilities and prescanned
HBprob1 Patching critical vulnerabilities 0.9 Likely patches are available because of rating
HBprob2 Patching noncritical vulnerabilities 0.5 Likely patches are not available because of rating
HBprob3 Patching critical vulnerabilities 0.9 Likely patches are available because of rating
HBprob4 Patching noncritical vulnerabilities 0.5 Likely patches are not available because of rating
HBlogC Forensic inspection, reimage, & notify 45 https://www.youtube.com/results?search_query=

inspect+host+logs+for+cyber+security+compromise
HBlogNoC Forensic inspection 30 See similar
HBlogPC Chance inspection finds compromise 0.9 Chosen by the game designer
HBlogPnoC Chance inspection finds compromise 0.9 Chosen by the game designer
LimitBRight 0 Chosen by the game designer
lowIndicentRepScore Game score parameter 20 Chosen by the game designer
highIncidentRepScore Game score parameter 30 Chosen by the game designer
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searching, research, downloads, and testing might require
considerable time in at least some instances. Also, players
might not be aware that the exploits that they need are
preloaded in their Metasploit software, for example. Table C.1
shows the parameters in our simulation model and their
descriptions. It also shows the estimated mean values in
minutes and the videos used for these estimates. Note that
these videos describe the actions by team members with
realistic example illustrations.

C.1. SIMIO Model
SIMIO is a commercially available software product with
general simulation capabilities. It supports three-dimensional
animation, including objects from the Google library. It also
offers many experimental design options and associated vi-
sualizations. In our simulation model (see Figure 4), we use
multiple features, including some for convenience (e.g.,
“dummy” hosts in which no task is performed):

Paths: Paths and user-defined properties are used to
regulate the chances that activities are successful. With the
user-defined variables, the model parameters or properties
are accessible in the spreadsheet associated with the sim-
ulation experiments as well as the following:

States: States are used to store the values associated with
the hosts. Then, using the Math.If() formula construction, the
properties and the states can set the service times and the
success probabilities.

Dummy servers: By using dummy servers, such as Score-
Host1, the server features permit assignment conditions for the
properties and states. This allows the scores of both teams to be
updated as well as the states of the hosts. If actions fail, paths
route the attention away from the dummy servers such that the
scores and system states remain unchanged.

Duplication for red and blue teams: Even though the two
teams work on the same two hosts, they are likely in different
rooms and not aware of each other. Also, their service times,
success probabilities, and attention paths differ greatly.
Therefore, we developed three copies of the network that
mirror the red team and two distinct blue team workflows.
The blue team has an additional factor and flow because its
operations can start either on the firewall (host #1) or on the
internal host (host #2). This relates to having full inter-
nal access.
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